python

超轻量级php框架startmvc

pandas DataFrame 行列索引及值的获取的方法

更新时间:2020-07-10 17:48:02 作者:startmvc
pandasDataFrame是二维的,所以,它既有列索引,又有行索引上一篇里只介绍了列索引:importpandasaspdd

pandas DataFrame是二维的,所以,它既有列索引,又有行索引

上一篇里只介绍了列索引:


import pandas as pd

df = pd.DataFrame({'A': [0, 1, 2], 'B': [3, 4, 5]})
print df

# 结果:
 A B
0 0 3
1 1 4
2 2 5

行索引自动生成了 0,1,2

如果要自己指定行索引和列索引,可以使用 index 和 column 参数:

这个数据是5个车站10天内的客流数据:


ridership_df = pd.DataFrame(
 data=[[ 0, 0, 2, 5, 0],
 [1478, 3877, 3674, 2328, 2539],
 [1613, 4088, 3991, 6461, 2691],
 [1560, 3392, 3826, 4787, 2613],
 [1608, 4802, 3932, 4477, 2705],
 [1576, 3933, 3909, 4979, 2685],
 [ 95, 229, 255, 496, 201],
 [ 2, 0, 1, 27, 0],
 [1438, 3785, 3589, 4174, 2215],
 [1342, 4043, 4009, 4665, 3033]],
 index=['05-01-11', '05-02-11', '05-03-11', '05-04-11', '05-05-11',
 '05-06-11', '05-07-11', '05-08-11', '05-09-11', '05-10-11'],
 columns=['R003', 'R004', 'R005', 'R006', 'R007']
)

data 参数为一个numpy二维数组,  index 参数为行索引, column 参数为列索引

生成的数据以表格形式显示:


 R003 R004 R005 R006 R007
05-01-11 0 0 2 5 0
05-02-11 1478 3877 3674 2328 2539
05-03-11 1613 4088 3991 6461 2691
05-04-11 1560 3392 3826 4787 2613
05-05-11 1608 4802 3932 4477 2705
05-06-11 1576 3933 3909 4979 2685
05-07-11 95 229 255 496 201
05-08-11 2 0 1 27 0
05-09-11 1438 3785 3589 4174 2215
05-10-11 1342 4043 4009 4665 3033

下面说下如何获取DataFrame里的值:

1.获取某一列: 直接 ['key']


print(ridership_df['R003'])

# 结果:
05-01-11 0
05-02-11 1478
05-03-11 1613
05-04-11 1560
05-05-11 1608
05-06-11 1576
05-07-11 95
05-08-11 2
05-09-11 1438
05-10-11 1342
Name: R003, dtype: int64

2.获取某一行:  .loc['key']


print(ridership_df.loc['05-01-11'])
# 或者
print(ridership_df.iloc[0])


# 结果:
R003 0
R004 0
R005 2
R006 5
R007 0
Name: 05-01-11, dtype: int64

3.获取某一行某一列的某个值:


print(ridership_df.loc['05-05-11','R003'])
# 或者
print(ridership_df.iloc[4,0])

# 结果:
1608

4.获取原始的numpy二维数组:


print(ridership_df.values)

# 结果:
[[ 0 0 2 5 0]
 [1478 3877 3674 2328 2539]
 [1613 4088 3991 6461 2691]
 [1560 3392 3826 4787 2613]
 [1608 4802 3932 4477 2705]
 [1576 3933 3909 4979 2685]
 [ 95 229 255 496 201]
 [ 2 0 1 27 0]
 [1438 3785 3589 4174 2215]
 [1342 4043 4009 4665 3033]]

*注意在这过程中,数据格式如果不一致,会发生转换.

一个综合栗子:

从 ridership_df 找出第一天里客流量最多的车站,然后返回这个车站的日平均客流,以及返回所有车站的平均日客流,作为对比:


def mean_riders_for_max_station(ridership):
 max_index = ridership.iloc[0].argmax()
 mean_for_max = ridership[max_index].mean()
 overall_mean = ridership.values.mean()
 return (overall_mean, mean_for_max)

print mean_riders_for_max_station(ridership_df)

# 结果:
(2342.6, 3239.9)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

pandas DataFrame 行列索引 pandas DataFrame 行列值获取